If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2-22.1x-8=0
a = 13; b = -22.1; c = -8;
Δ = b2-4ac
Δ = -22.12-4·13·(-8)
Δ = 904.41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22.1)-\sqrt{904.41}}{2*13}=\frac{22.1-\sqrt{904.41}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22.1)+\sqrt{904.41}}{2*13}=\frac{22.1+\sqrt{904.41}}{26} $
| 7x+9=3x-27 | | 3t/4=t+13 | | 23467/b=38 | | 5x^2-7x+12=0 | | -106=-6k-4 | | x+2=66 | | 5-4r=17 | | v-42=11 | | 8.3=-0.6x+1.3 | | 1=7-3k | | 14e-17=39 | | a/4-7=-5 | | Y=3x-9+8× | | 41x^-5x-240=0 | | 3(m-5)=9m-3 | | (5x+x)÷x5=6 | | -6(x+14)+6x=3(x-1) | | 2y=-1+11 | | 8-9x-2=-43+7x-15 | | -x-11=-3x-23 | | 7x+5+4x+10=180 | | 6^x^2=21 | | 30p^2+84p-18=0 | | 4-(x+2)=(1/3)(5x-1) | | z-35=62 | | 8(2x+7)=32 | | 3k-9=k+9 | | 2.5-0.35x=-3 | | 2x=1.5x+3 | | -3(1+2a)+8=-3(a-9)-5a | | 10a-90=2a | | 12=15(z−1/5) |